
Abstract-Recently, we  observed zero phase  and undershoot patterns 
in  data processed  by a  minimum-variance deconvolution (MVD) fiiter. 
These  observations motivated a  careful  analysis of  the MVD fiiter, which, 
as we demonstrate  in this paper, explains  both the zero phase  and  under- 
shoot  patterns. This  analysis also connects the MVD fiiter with  the 
well-known prediction-error filter [6], and  Berkhout’s two-sided  least- 
squares  inverse filter [7]. We show that the performance of the MVD 
filter  depends heavily on the bandwidth of the source  wavelet  and signd- 
to-noise  ratio, and only  slightly on data  length. 

1. INTRODUCTION 

M ENDEL [ 11 -[3]  and Mendel and  Kormylo [4] have 
developed  a  minimum variance deconvolution (MVD) 

filter for  the  following discrete time  convolutional  model: 

z(k) = y(k) i- n(k) = p(k) * V(k) i- n(k) 

= 2 p ( j ) V ( k - j ) t n ( k ) ,  k = 1 , 2 ; * . , N  (1) 
i = 1  

in which y(k)  is a noise free signal  (e.g., output of  a  communica- 
tion channel, seismic trace); n(k) is measurement  noise  which 
accounts  for  physical effects not explained  by y(k) ,  as  well as 
sensor noise; V(i), i = 0, 1, 2, * * * , is a  sequence  associated 
with  the signal distorting system (e.g., impulse response of 
communication  channel  or seismic source); and p( j ) ,  j = 1, 2 ,  
. * - , is the desired signal sequence (e.g.,  message, reflectivity 
sequence).  The  equation (1) model  occurs in many different 
fields, including  astronomy [8], communication  systems [9] - 
[ 121 , and reflection seismology [3] , [5] , [ 131 . 

In MVD, measurements z(l), 2(2) ,  - , z(N) are processed 
linearly so as to obtain  a  fmed interval smoothed  estimate, 
G(k[ N ) ,  of p(k)  for all k = 1,2, - - , N .  Recently, we  observed 
zero  phase  and  undershoot  patterns in deconvolved data  ob- 
tained  from  the MVD filter. These observations  motivated  a 
careful analysis of  the MVD filter,  which, as  we demonstrate 
in this paper,  explains both  the zero  phase  and  undershoot 
patterns.  This analysis also connects  the MVD filter with  the 
well-known  prediction-error filter (PEF) [6], and  Berkhout’s 
two-sided least-squares inverse filter [7]. 

The application  of the MVD filter requires that V(k) and all 
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statistical parameters  for p(k) and n(k) be given. In practice, 
some  or all of  these  quantities  may  not  be  known.  For  example, 
they are often all unknown in the seismic deconvolution  prob- 
lem,  and  must  somehow be estimated  before  one  can use the 
MVD filter (see, for  example, Mendel [3] and  Chi,  Mendel, 
and  Hampson  [16]). In this  paper, we  assume that all the  in- 
formation  that is needed to implement  the MVD filter is known 
a priori and then  concentrate on studying  the  performance of 
the MVD filter. 

In  Section I1 we briefly describe  the  modeling  assumptions 
associated  with  convolutional  model (1). In  Section 111 we 
summarize the MVD filter,  because  its  structure is needed in 
the rest of  the  paper.  In  Section  IV we compute a number  of 
important filter impulse  responses  and establish precise relation- 
ships between  the  prediction-error filter and an innovations 
fdter, and  between  Berkhout’s infinite-length two-sided least- 
squares inverse filter  and  the  steady  state MVD filter. In  Section 
V we quantify  the  zero phase and  undershoot  patterns  observed 
in  deconvolved data  obtained  from  the MVD filter. In  Section 
VI  we examine convergence aspects  of MVD results and  dem- 
onstrate  the  strong effect signal-to-noise ratio has on MVD 
filter performance.  Computer  simulations  which  confirm  most 
of the paper’s theoretical results are given in Section  VII. 

11. MODEL ASSUMPTIONS 
In  convolutional  model (I), we assume, as in reflection 

seismology, that p(k) is zero  mean  and  white,  with  variance 

E{p*(k)} = u;. ( 2 )  

Additionally, noise n(k) is  assumed to be zero  mean,  white, 
and Gaussian, with variance 

E{n2(k ) )  = R (3) 

and n(k) is assumed to be independent of p(k).  
Wavelet V(k) (i.e., the impulse response  of  the  signaldis- 

torting  system) is assumed to be an nth-order  autoregressive 
moving  average  (ARMA),  whose z-transform is 

5 p i z - i + l  

i = 1  
V(Z> = (4) 

1 - 0 r i Z - i  
i = l  

In MVD  we represent (1) and (4) using the following  state- 
variable model: 

x(k) = @x(k - 1) 4- yp(k)  (5) 

and 
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z(k) = h’x(k) + n(k),  (6) 

where CP is an n X n matrix, y and h are n X 1 vectors, and @, 
y, and h are functions of ai and pi. Of course, given a transfer 
function  of a linear time-invariant system,  there exist many 
(CP, y, h)’s which generate the same output z(k)  (e.g., [ 3 ] ,  
[17]).  For example, CP, y, h for  the “controllable canonical 
form”  are 

10 0 1 . * - o  I 

Y =  [) and h = f )  . 

One can easily  show that  the impulse response of the  state- 
variable model, h’Gky ( k  = 0, 1, . * . ), equals V(k)  associated 
with  the ARMA transfer  function (4). 

For purposes of later analyses, we express convolutional 
model  (1)  in  matrix form, as 

z =  V p + n  (7) 

where 

z = col  (z(l), 

V =  

n = col  [n(l), n(2), . . , n(N)]  , (1  1) 

and N is the  total number  of measurements. Additionally, we 
assume that V is invertible, i.e., V(0) = p1 # 0 (see [ 3 ]  for  the 
case when V(0) = 0), 

111. MVD FILTER 
The MVD filter estimates the  input signal p(k)  from the mea- 

surements, z .  It is  well known (e.g., [3])  that  the linear mini- 
mum variance estimator ofp,;, is  given by 

; = Elpz’} [E{zz’}] -l z. (12) 

From (7)  and  our modeling assumptions  about p and n,  we de- 
termine that 

E b z ’ )  = E{p(Vfi + n)’} = u;: v’ (1 3) 

and 

E[zz’]  2 52=E[(Vp+n)(Vp+n)’]  =u; VV‘+RI.  (14) 

Substituting  (13)  and (14) into (1  2), and  then using  (7),  we 

determine that 

p = u2 v’Q-’ z = u2 VQ-’ ( ~ p  + n) =ps + e, (1 5 )  
A 

P P 
A 

where 

j l S  = u; v’a-’ vp (1 6) 

and 

e = u; v’n-’n. (17) 

From (1 5 )  and  (14), it is straightforward to  show that  the 
error covariance matrix  for  estimator p i s  

A 

E{  [p-;] [p- ;]‘}=E[;&] = o i l -  U; V‘Q-’ V. (18) 

Matrices V and are N X N ,  and  can  be  quite large; this 
makes the calculation  and inversion of Q costly.  Instead of 
computing via the first term  on  the right-hand side of (19, 
it  can  be  computed using  Mendel’s  MVD algorithm,  which we 
summarize next. Because t h s  algorithm uses a Kalman filter, 
we state  the Kalman filter equations first. 

Predictor: 

x ^ (k l k -  l ) = & ( k -   I l k -  1) (19) 

P(kl k - 1) = @P(k - 1 1 k - 1) CP‘ + uiyy‘ .  (20) 

q k l k  - 1) = z (k )  - h’x^(kl k - 1) (21) 

Innovations: 

~ ( k ) = h ’ P ( k l  k -  l ) h  + R.  (22) 

0 Corrector: 

K(k )  = P(k 1 k - 1) h 17-1 (k )  (23) 

x^(kIk)=x^(kIk-  l)+K(k)?(kIk- 1) (24) 

P(kl k )  = [I - K ( k )  h’ ]  P(kl k - 1). (25) 

and 

In these equations, x^(kl]) denotes  the state  estimate of x(k)  
given z(l), z(2), * . * , z(j), and P(k l j )  is the corresponding 
error covariance matrix.  Additionally, z(kl k - 1) is the in- 
novations process, ~ ( k )  is its variance, and K(k)  is the Kalman 
gain vector. 

The first step of Mendel’s  MVD algorithm is to pass  all of the 
data, z(l),  z(2), . . , z(N),  through  the Kalman filter. Values 
of g(kl k -  l),  ~ ( k ) ,  and K(k)  are  stored at each iteration of 
the Kalman  filter. The second step  of  the MVD algorithm is to 
process the innovations, ;(kl k - l),  k = 1, 2, . . . , N ,  by  the 
anticausal filter 

r ( k l N ) =  [ I - K ( k ) h ’ ] ‘  CP’r(k+ 1IN) 

i- h 17-l ( k )  z(kl k - l), (26) 

k = N ,  N - 1, * . . , 1, where r(N t 1 IN) = 0. Finally,  estimates 
of p(k) ,  c ( k l  N )  are  obtained as 

G(k jN)= u;y’r(kIN).  (27) 

Obviously, the MVD filter i s  noncausal and time varying. 

IV. STEADY-STATE MVD FILTER 
For a time-invariant wavelet and  stationary noises, the Kal- 

man gain matrix, as well as the error-covariance matrices, will 
reach  steady-state values.  When this occurs, both  the Kalman 
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filter and anticausal filter (26)  and (27) become time invariant, 
and we then refer to  the MVD filter as a steady-state MVD 
filter. In the sequel we  will examine properties of this steady- 
state filter. To begin, though, we need to establish formulas 
for the impulse responses (IR's) of a  number of subsystems 
which are associated with the interconnections qf  the steady- 
state Kalman and anticausal$lters. 

In (12) we decomposed p into  its signal and noise comp2- 
nents, pS ande, respectively. Note, from(l6)and(l7),ihatp, 
depends only onp,Thereas e depends qnly on n. Fig. 1 shows 
more clearly how p (kl N )  and e(k) [the  components o f k S  
and e, respectively] qre constructed  from p(k) and n(k). Ob- 
serve that  both z(k) and z(klk - 1)  have been decompased 
into signal and noise components, i.e., z(k) =y (k )  + n(k) and 
;(kl k - 1) = i',(kl k - 1) + Fn(kl k - 1). Observe, also, that 
Vz(k )  is the  IR of the steady-state Kalman filter whose input 
and output are z(k) and ?($I k - l), respecfively, and that 
V3(k) is the IR of the anticausal steady-state filter (26)  and 
(27), whose input and output are z"(klk- 1) and c ( k l N ) ,  re- 
spectively. In this section we compute formulas for Vz(k) ,  
VI ( k )  = v(k) * Vz(k),  V3(k), and V&-V(~) = V,(k) * V3(k). 

We begin by deriving the impulse response of the steady- 
state Kalman (i.e., innovations) filter V,(k). From (19),  (21>, 
and (24) we  see that 

x^(kJk-  l)=CP(I-Kh')x^(k- I l k -   2 ) + @ K z ( k -  1) 

(28) 

where K is the steady state Kalman gain. From (28) and (21), 
it is straightforward to show that 

k = O  

V&) = -h' [@(I- Kh')] k - 1  @K, k > 0 (29) [:: otherwise. 

Fact 1:  The negative of Vz(k) in (29) represents a closed- 
form formula for the  coefficients of an infinite-length predic- 
tion-error filter. 

Proof: Using the  fact,  from (29), that Vz(0) = 1,  we can 
express the innovations  as 

?(kl k - 1) = ~ ( k )  * VZ(k) = ~ ( k )  - [- Vz(i)] ~ ( k  - i). 
a 

i= 1 

(30) 

Note, also, that g(kl k - 1) = z(k) - ;(kl k - l), which means 
that  the second term on the right-hand side of (30) equals 
z(kl k - l),  but z(kl k - 1) is a minimum variance predicted 
estimate of z(k). Therefore, ?(kI k - 1) is the  output  of a PEF 
[6] . The coefficients of this PEF are 1, - Vz(l), - Vz(2), - . * . 

A 

We believe that this is the first time a closed-form formula 
has been given for  the  PEF coefficients. To obtain these CO- 

efficients, one must first obtain a state-variable model  from 
source wavelet data (this establishes CP, y and h),  then compute 
the steady  state Kalman gain K ,  and finally compute V,(k) 
via (29). 

Next, we determine V,  ( k )  where 

Fig. 1. A block diagram interpretation of MVD filtering. 

From Fig. 1, we  see that 

;(kl k - 1) = z",(kl k - 1) t z"n(k1 k - 1) 

= p(k) L V, ( k )  t n(k) * Vz(k). (32) 

We determine V,  (k) by lettipg n(k) = 0 in  the Kalman filter 
equations. When n(k) = 0 

z(k) = y(k)  = h'x(k) (33) 

and 

z"(kl k - 1) =y(k )  - h%(k l i c  - 1) =hk^(kl k - 1) (34) 

2(k(klk- l>=x(k)- .x^(klk-  1). (3 5) 

where 

From (S), (28), (33), and ( 3 9 ,  we find ihati(k(k( k - 1) satisfies 
the equation 

x"(k( k - 1) = @x(k - 1) yp(k)  

- @(Z- Kh')x^(k - 1 I k - 2) - cPKhjr(k - 1) 

= @(I- K h ' ) l ( k  - 1 Ik - 2) t yp(k). (36) 

Equations (36) and (34) imply that 

h'[CP(Z - Kh') ]k  y, k 2 0 
(37) 

0,  otherwise. 

Next, we determine the impulse response of  the steady-state 
anticausal filter. Note,  from Fig. 1,  that c ( k l N )  = V3(k) * 
;(kt k - 1). From  (26) and (27) we determine that 

1: y' [(I- Kh')' CP'] -k h 

0, otherwise 

where q is the steady-state value of ~ ( k ) .  Comparing (37) and 
(38), we see that 

V3(k) = - vi (-k). 4 
77 

(39) 

Finally, we compute the IR  of  the steady-state MVD filter, 
VMV(k), which, from Fig. 1, (39), and  (31), is 



1148 IEEE TRANSACTIONS ON ACOUSTICS,  SPEECH, AND  SIGNAL PROCESSING,  VOL. ASSP-32,  NO. 6 ,  DECEMBER 1984 

V ~ v ( k )  = VZ(k) * V3(k) = - V2(k) * V,(-k) fJi 
9 

2 
- u* -- V2(k) * V(-k) * V,(-k). (40) 

1) 

Fact 2: The steady-state MVD filter, whose IR is given by 
VMv(k), is exactly the same as Berkhout’s infinite-length two- 
sided  least-squares  inverse filter. 

Proof: The  Fourier  transform  of VMv(k), VMV(W>, is 

V M V ( 4  = - V*(W> j V2(w) l 2  f 

4 (41) 
9 

From (30) and (l), and  the  fact that ;(kl k - 1) is white noise, 
it follows that 

9 = @&)I V 2 ( 4 ( 2  (42) 

and 

9 ( 0 )  = u i  I V(o)l2 f R. (43) 

Substitute (42) and (43) into (41) to see that 

(44) 

which is exactly  the same frequency  response as that of Berk- 
hout’s infinite-length two-sided least-squares inverse filter [7] . 

The steady-state MVD filter is a recursive implementation of 
Berkhout’s infinite-length filter.  Additionally, the MVD filter 
is applicable to time-varying  and  nonstationary  systems, whereas 
his filter is not. 

H 

V. PROPERTIES OF THE STEADY-STATE MVD FILTER 
In  this  section we describe  some  properties  associated  with 

the steady-state MVD filter. These properties were  observed 
first in simulations  of  the MVD filter,  but  can  be  predicted 
using the results just  obtained in Section IV. 

Property 1: Let c,(kl N )  denote  the “signa1”component in 
G(k1 N ) .  Then 

e,@ 1 N )  = P(k) * R 1 ( k )  (45) 

where R (k) is the autocorrelation function 

R,(k)= !$ V,(k) * V,(-k)  (46) 
9 

and 

(47) 

This means that i,(kl N )  is a zero-phase  waveshaped  version of 

Proofi Expressions for the signal component  of c ( k l N ) ,  
N ) ,  are  easily  derived by  analyzing  the top  path in Fig. 1 

Er(k). 

and using (39). SRecifically, 

Gs(kl N )  = P(k) * Vl ( k )  * V,(k) 

= p(k)  * [$ V ,  ( k )  * v1 ( - 4  

Comparing  (48)  and  (49), we determine that  R1 ( k )  is  given by 
(46). Note, also, from Fig. 1 and (44), that 

R1 (a) = V(cJ) V2(0)  V3(w) 

Observe that R 1  (a) has  zero  phase. H 

Recently, Mendel [ 151 showed  how to accomplish minimum- 
variance waveshapingby 1) deconvolvingz(k) to obtainL(k1 N ) ,  
and 2) convolving G(kl N )  with  desired waveshaper d(k).  Prop- 
erty  1 demonstrates that  the final waveshape  will not be d(k); 
instead it will be Rl(k) * d(k).  Of course, the more impulsive 
R ,  (k )  is, the closer R (k )  * d(k)  will be to d(k). 

Property 2: Let a;/R be treated as the  MVD  filter tuning 
parameter, Then R,(k) + 6(k)  as oilR -+ 00. In this case the 
MVD waveshaper  has a signal component equal to p(k) * d(k). 

Proof: Express  (47) as 

asu;/R~WR1(G;)’1,inwhichcaseR,(k)~6(k).  
Property 3: Assume that sequence puck) contains only an 

isolated spike at k = k l .  Then I &(klN)I G I fi,(klIN)I < 
I p ( k l )  I which means that G,(kl IN) undershoots p(k l ) .  

Proof: Sequence p ( k )  can  be expressed as 

P(k)=r(k1)6(k- k , )  (52) 

A basic property  of an autocorrelation  function R1 ( j )  is that 
R 1 ( 0 ) 2   [ R l ( j ) /  for alljfO.  ThemaximurnvalueofR,(k- 
k , )  occurs at k = kl  ; thus, 

Ii,(kIN)I G ICs(k1 

= Rl(O) I f (~ l ) l  

= R l ( O ) ~ P ( ~ d ~ .  (54) 

From  (47), we  see that 

O < R R l ( a ) < l  V -  ~ < o G n .  (55) 

From Parseval’s relation and (55), we determine that 



If p(k)  consists of widely separated spikes at k = k l ,  k 2 ,  
- . . , k M ,  then Property 3 explains why ;&IN) will under- 
shoot p(k) at k = kl  , k 2 ,  * . . , kM.  On the  other  hand, if p(k)  
contains closely spaced spikes, for  example, at k = k4 and k 5 ,  
then it is quite possible for I i , ( k 5  IN)\ > I p(ks) l .  In this 
case, 

M 
Zs(k5 IN) = r(ki)Rl ( k S  - ki) (by  linearity) 

i = 1  

so that if the first term of (59) is in phase with the second 
term of (59), the two terms will be larger in  amplitude than 
r ( k 5 )  R 1  (0); thus, it is quite possible that  the terms  on the 
right-hand side of (59) will be larger than p ( k 5 )  (in amplitude), 

Thus far, we  have been focusing on  the signal component of 
, even though I r(ks)R 1(0) I < I P(ks)  1. 

; (k[N) ,c , (k lN) .  From (15) we note  that 

and,  from Fig. 1,  that 

If a lot of noise is present then ;@IN) may look  quite  differ- 
ent from ;,(It\ N ) ,  and it will be difficult to observe the zero 
phase and  undershoot  properties just described. On the  other 
hand, if not much noise is present, then these properties, that 
were derived for ;,(kI N ) ,  will also be discernable on c(kl N ) .  

VI. ANALYSIS OF ESTIMATION ERROR 

In this  section we study the behavior of  the variance of  the 
error  between f ; ( k l N )  and p(k) ,  in order to learn if any defini- 
tive statements can be made about  the convergence of c ( k  1 N )  
to p(k) .  This error variance is denoted a2(kl N ) .  

To begin, we define signal-to-noise ratio (SNR) as (note that 
the definition of SNR seems to vary within the signal processing 
community) 

It is straightforward to show that 

where E,, is the energy of the wavelet V(k), i.e., 

E, = 2 V2(k) .  
k = o  

The following results are proven in Chi [ 141 for all k and N .  
1) The error variance 0 2 ( k \  N )  is bounded  from below, i.e., 

where 

CHI AND MENDEL: MINIMUM-VARIANCE DECONVOLUTION FILTER 1149 

2 )  a2(kl N )  + 0 if and only if SNR + m. T h s  means that, 

(b) 
RAD I ANS 

Fig. 2. (a)  Fourth-order wavelet and (b) itssquared  amplitude  spectrum. 
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Fig. 3. Synthetic noisy data (SNR = 100). 

and 

N -k 
E k , N  = v2((i). 

i = o  

For  finite  SNR, the limiting value of a 2 ( k / N ) ,  as N - +  00, is 
bounded by p 2 ,  where 
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Fig. 5. Scaled  innovations  process, 5 ?(k(k - 1) (SNR= 100). Note 
that scaling was done so that  the  innovations process  could be  plotted 
on  the same plot as p ( k ) ,  and  that  the circles depict  true  nonzero 
values of &). 
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Fig. 6 .  $ (k lN)  (SNR = 100). Circles  mark true values of ~ ( k )  and  bars 
mark the  corresponding  estimates. 
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Fig. 7. C ( k ( N )  for N =  250, SNR= (a) lo3,  (b) lo4, (c) lo5 ,  (d) lo6, 
and (e) for N = 2500 and SNR = lo4.  Circles  mark  true values of 
p(k) and bars mark the  corresponding estimates. 

in general, c(kl N )  does not converge to p(k) in a  mean-square 
sense. 

3) ;@IN) does not even  converge to p(k)  in probability, 
unless SNR + m. Additionally,  one can show that 

4) In  the region of time where both  the Kalman and  anti- 
causal filters (i.e., the MVD filter) are in steady  state,  the  steady- 
state value of u2(kl N ) ,  u2, is  given by 

u2 = u; [I - R,(O)]. (68) 

Note,  from (54), that 1 - R1 (0) equals  the  undershoot  between 
an isolated spike  and  its MVD estimate;  thus,  the larger this 
undershoot is, the larger u2 is. 

5 )  u2 -+ 0 if and  only if SNR + 00. 

These results demonstrate  the  strong effect SNR  has on 
MVD filter performance. 

VII. COMPUTER  SIMULATIONS 
In this section we provide  two  examples  which  support  and 

demonstrate  our  preceding theoretical results. For each  ex- 
ample we generated  noisy  data  by convolving a  white  Bernoulli- 
Gaussian input sequence, /.@), with  a wavelet V(k)  and  adding 
white Gaussian  noise to those results. We then deconvolved 
the  noisy  data using the MVD filter, to obtain c(kl N ) .  

A Bernoulli-Gaussian sequence [3] can be represented as 

P(k) = r(k) dk) (69) 
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Fig. 9. $(klN) (SNR = SO). Circles  mark true values of p ( k )  and  bars 

mark  the  corresponding  estimates.  The  larger  true  spike is scaled by 
a  factor 0.5. 

where r(k) is a  white Gaussian amplitude sequence with vari- can, as predicted by (51), overcome the shortcomings of low 
ance C, and q(k)  is a Bernoulli sequence with parameter A. SNR. For  example, results from a prediction-error filter are 

Example 1: In this example, we assumed that A =  0.05, C= quite  good; ;(klN) undershoots p(k) much less than for  a 
0.0225, R = 0.1536 X and N= 250, and, we used the narrow-band wavelet; and R,(k) is very spiky so that a  non- 
narrowband fourth-order wavelet depicted  in Fig. 2(a). The causal pattern is not observed in c,(kIN) or G(klN). 
squared amplitude  spectrum of V(k)  is depicted in  Fig. 2(b), Example 2: Our second example demonstrates  a case  in 
and  the tfansfer function of V(k)  is which overshoot  occurs  between G(k\ N )  and @(k). The same 

V(2) = 
0.0378417 - 0.0306517~-~ 

1 - 3.40164972-' + 4.51 13732~-' - 2.7553363~-~ + 0 . 6 5 6 1 ~ ~ ~  
- 

The resulting noisy seismic data, for SNR = 100, are depicted 
in Fig. 3. 

Fig. 4(a)-(e) depicts V2(k) ,  VM&), Vl (k),  R,(k) ,  and 
R,(o). Observe that V2(k) is causal with V2(0) = 1; VMv(k) 
is noncausal, but is not zero phase; Vl(k)  is causal and has a 
much  shorter length than V(k); R,(k) is a zero-phase signal 
with  much  shorter length than V(k); and R,(w) [computed 
from (51)] has alow-passcharacter. Note thatR,(O)=  0.3213, 
which means that  for sparse spikes ;,(k) will undershoot p(k) 
quite  a lot. 

Fig. 5 ,  which depicts  a scaled innovations process, [i.e., 
5z"(k I k - l)] , demonstrates that  the deconvolved data using a 
prediction-error filter is very noisy and  quite  unsatisfactory. 
Fig. 6,  which depicts c(kl N ) ,  demonstrates  a more predictable 
result. Observe that ;@IN) undershoots p(k) by  about  70 
percent and is comprised of a series of noncausal signals. 

Deconvolved results for larger SNR values equal to  1 O3 , lo4 , 
lo5, and lo6 are depicted in Fig. 7(a)-(d). Observe that, as 
SNR increases, &tl,"i) becomes more spike-like, and that as 
SNR + 00, G(kl N )  -+ p(k).  For most values of SNR c(kl N )  
almost always undershoots p(k) .  

Fig. 7(e) and (b) should be compared. They are virtually 
indistinguishable. Both are for  the same SNR = 1 04, but  the 
former is for a very long data record (i.e., N = 2500), whereas 
the  latter is for a  shorter  data record (i.e., N = 250). 

Fig. 7(a)-(e) supports  our  theoretical conclusions that MVD 
filter performance depends very much on SNR but  not  on data 
length N .  

Chi [ 141 has repeated this  experiment for a  broad-band (in 
frequency) wavelet. Space does not permit us to include his 
results. Instead, we mention  that a broad-band source wavelet 

X, C, and V(k)  are used in  this example as in Example 1 ; how- 
ever, SNR = 50. By design, there are only two close spikes 
in p(k). Fig. 8 depicts &(k[N);  it undershoots p ( k )  for the 
larger spike and overshoots p(k )  for the smaller spike. The 
same situation occurs for c(kIN) ,  depicted in Fig. 9. The 
overshoot behavior depicted  in these two figures is due to  the 
close spacing of  the  two spikes and the broad (in time domain) 
nature of R (k). 

VIII. DISCUSSION AND CONCLUSIONS 
Many filters have been developed for seismic deconvolution, 

channel equalization,  etc., which attempt  to remove effects of 
the signal distorting system and noise. The predictionerror, 
two-sided least-squares, and MVD filters are  three such filters. 
Although their derivations are quite  different, we  have shown 
that  the former two filters are indeed related to the MVD filter. 
More specifically, we have shown the following. 

I)  The steady-state innovations filter is an infinite-length 
prediction-error filter, whose coefficients are given  in closed 
form by (29). 

2) The steady-state MVD filter is equivalent to Berkhout's 
infinite-length least-squares inverse filter, the coefficients of 
which can be  computed  from (40). 

3) The signal part of c ( k l N ) ,  ;,(k( N ) ,  is obtained by  con- 
volving a zero-phase wavelet, Rl (k ) ,  with &), where R ,  (k) 
is an autocorrelation  function. 

4) R,(w) depends on U ~ I V ( W ) ~ ~  and R [see (51)] ; it does 
not depend on  the phase of the source wavelet. When 
u i  I V(w)[  >> R for some band of frequencies, then R ,  ( k )  
behaves like a bandpass or low-pass filter. When u t  V(w) I 2  >> 
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R for  a  brogd range of  frequencies, then R1 ( k )  is quite  impul- 
sive so that ps(kl N )  “ p ( k ) .  

5) When the  input p(k) is a sparse spike  train&] N )  usually 
undershoots p(k). 

6 )  Convergence of  the MVD filter depends  strongly on SNR 
instead  of N .  

From these  conclusions we note, finally, that  the perfor- 
mance of the MVD filter depends heavily on  the wavelet and 
SNR and  only slightly on N .  
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